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The objective of this study is to develop a method of controlling vortex shedding
behind a bluff body using control theory. A suboptimal feedback control procedure
for local sensing and local actuation is developed and applied to the flow behind
a circular cylinder. The location of sensors for feedback is limited to the cylinder
surface and the control input from actuators is the blowing and suction on the cylinder
surface. Three different cost functionals to be minimized (J1 and J2) or maximized
(J3) are investigated: J1 is proportional to the pressure drag of the cylinder, J2 is the
square of the difference between the target pressure (inviscid flow pressure) and real
flow pressure on the cylinder surface, and J3 is the square of the pressure gradient on
the cylinder surface, respectively. Given the cost functionals, the flow variable to be
measured by the sensors and the control input from the actuators are determined from
the suboptimal feedback control procedure. Several cases for each cost functional have
been numerically simulated at Re = 100 and 160 to investigate the performance of the
control algorithm. For all actuations, vortex shedding becomes weak or disappears,
and the mean drag and drag/lift fluctuations significantly decrease. For a given
magnitude of the blowing/suction, reducing J2 provides the largest drag reduction
among the three cost functionals.

1. Introduction
The phenomenon of vortex shedding behind a circular cylinder has been a major

topic of fluid mechanics research (Williamson 1996). Since Roshko (1955) measured
the vortex shedding period behind a bluff body, many researchers have investigated
vortex shedding behind a circular cylinder at low Reynolds numbers. When vortex
shedding appears, mean drag and fluctuations of drag and lift increase. Furthermore,
drag and lift fluctuations shorten the life of a structure. On the other hand, vortex
shedding enhances mixing behind a circular cylinder. Therefore, controlling vortex
shedding is very important in practical situations and many researchers have been
investigating various control methods to passively or actively control it and thus to
reduce mean drag and drag/lift fluctuations, or to enhance mixing.

There have been many passive or non-feedback active ways of controlling vortex
shedding: for example, endplates (Nishioka & Sato 1974; Stansby 1974), inhomo-
geneous inlet flows (Gaster 1969, 1971; Gerich & Eckelmann 1982), splitter plates
(Roshko 1955; Gerrard 1966; Apelt, West & Szewczyk 1973; Apelt & West 1975;
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Unal & Rockwell 1988; Cimbala & Garg 1991; Kwon & Choi 1996), blockage (Shair
et al. 1963), a second cylinder in the wake (Strykowski & Sreenivasan 1990), base
bleed (Wood 1964; Bearman 1967; Schumm, Berger & Monkewitz 1994), and peri-
odic rotation of the cylinder (Tokumaru & Dimotakis 1991). These control methods
are passive or non-feedback active in the sense that there is no energy input or no
feedback sensor, respectively.

Recently, a few active and feedback ways of controlling vortex shedding have been
investigated. Roussopoulos (1993) conducted feedback control using a speaker based
on the velocity phase information measured at a point in the wake. As a result,
complete suppression of vortex shedding was possible up to 10 units of the Reynolds
number above the onset of shedding. A similar feedback approach was conducted
by Park, Ladd & Hendricks (1994) using a pair of blowing/suction slots on the
cylinder and a single feedback sensor located in the wake. They showed a complete
suppression of vortex shedding at Re = 60.

Most of those control methods, however, are based on physical intuition through
observation of flow phenomena. When flow phenomena are too complex to under-
stand, it is not an easy task to develop a control scheme based on physical intuition,
and thus one may have to rely on more systematic control methods. Theoretically
oriented work on controlling fluid flow can be found in Abergel & Temam (1990) and
in a series of articles by Gunzburger, Hou & Svobodny (1990, 1991, 1992). Abergel &
Temam (1990) applied an optimal control theory to some fluid mechanics problems
and derived optimality conditions for various physical situations, but the application
of their optimal control algorithm to the unsteady three-dimensional Navier–Stokes
equations is not practical owing to the great complexity of the algorithm. Gunzburger
et al. (1990, 1991, 1992) also considered various optimal control problems in fluid
mechanics and studied mathematical and numerical problems such as the existence
of optimal controls, necessary optimality conditions of the first order, the discretiza-
tion of those problems by finite element, and convergence and error estimates for
the discrete problems. Recently, Temam, Bewley & Moin (1997) applied an optimal
feedback control procedure to a low-Reynolds-number turbulent channel flow and
reported a significant amount of drag reduction and, in some cases, relaminarization
of the turbulent flow. The procedure developed by them, however, still required vel-
ocity information inside the flow in order to solve the adjoint equations, from which
a feedback control input was derived.

In order to overcome the complexity of the procedure developed by Abergel &
Temam (1990), Choi et al. (1993b) introduced a suboptimal feedback control algo-
rithm, in which the iterations required for a global optimal control were avoided by
seeking an optimal condition over a short time period. The suboptimal control pro-
cedure was successfully applied to control of the stochastic Burgers equation. Satake
& Kasagi (1997) applied unsteady momentum forcing, obtained from the suboptimal
control procedure, to a turbulent channel flow and showed that a significant amount
of drag reduction is achieved by controlling near-wall spanwise velocity fluctuations,
but their approach needed velocity information near the wall. Recently, Lee, Kim &
Choi (1998) applied unsteady blowing and suction to a turbulent channel flow and re-
ported that the suboptimal feedback control procedure using pressure or shear-stress
information only at the wall resulted in 16%–22% reduction of the skin-friction drag.

In the previous studies on feedback control of vortex shedding behind a circular
cylinder at low Reynolds numbers (Roussopoulos 1993; Park et al. 1994), feedback
sensors were located in the wake and feedback controllers were constructed based
on physical intuition through observation of flow phenomena. Their control purpose
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was to stabilize the wake instability. In the present study, our control purpose is
different from the previous one in the sense that we develop a systematic control
method using the suboptimal feedback control scheme, which may be applied to both
laminar and turbulent flows, in order to achieve drag reduction through control of
vortex shedding behind a circular cylinder. Also, we restrict the location of feedback
sensors to the cylinder surface because implementation of the sensor in the wake
is not practical in many real situations. The control input from actuators is the
blowing and suction on the cylinder surface. We will show that vortex shedding can
be successfully controlled using information only on the cylinder surface and drag is
reduced accordingly. Governing equations and numerical details are described in § 2.
In § 3, cost functionals expected to reduce drag of the circular cylinder are defined,
and a suboptimal feedback control procedure for each cost functional is presented in
§ 4. Results are shown in § 5, followed by a summary in § 6. Detailed derivations of
equations in § 4 are given in Appendices A and B.

2. Governing equations and numerical details
In this study, we numerically simulate the incompressible Navier–Stokes and con-

tinuity equations

∂ui

∂t
+
∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, (2.1)

∂ui

∂xi
= 0, (2.2)

where t is time, xi are the coordinates, ui are the velocity components, p is the pressure
and Re = u∞d/ν is the Reynolds number. Here u∞ is the free-stream velocity, d the
diameter, and ν the kinematic viscosity.

Rewriting (2.1) and (2.2) in a generalized coordinate system (η1, η2) yields

∂Qi

∂t
+Hi = −Pi +

1

Re
Di, (2.3)

∂Qi

∂ηi
= 0, (2.4)

with

Qi = ζijuj , (2.5)

cij =
∂xi

∂ηj
, (2.6)

ζij = J(cji )
−1, (2.7)

J =
√
||cki ckj ||, (2.8)

where i, j, k = 1, 2, Hi are the nonlinear terms, Pi are the pressure terms, Di are the
diffusion terms, and Qi are the volume fluxes across the faces of the cells, which
are equivalent to using the contravariant velocity components on a staggered grid
multiplied by the Jacobian (J) of the coordinate transformation. Using this choice,
discretized mass conservation can be easily satisfied (Rosenfeld, Kwak & Vinokur
1991; Choi, Moin & Kim 1992, 1993a). For details, refer to Choi et al. (1992).

To solve (2.3) and (2.4), a fully implicit (Crank–Nicolson) fractional step method
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is used in time and a second-order central difference method is used in space with a
staggered grid. A multigrid method and a Newton-iterative method are used to solve
the Poisson equation and the discretized nonlinear momentum equations, respectively.
This scheme has been successfully applied to a turbulent flow over riblets (Choi et al.
1993a) and a laminar flow past a circular cylinder (Kwon & Choi 1996).

Figure 1 shows the grid system, flow geometry and coordinate system along with
boundary conditions. A C-type grid system is known for better resolution in the
wake region than an O-type grid system (Thompson, Warsi & Mastin 1985). The
computational domain used is −50d < x < 20d and −50d < y < 50d, where x = 0 and
y = 0 corresponds to the centre location of the cylinder in the Cartesian coordinate
system. A non-uniform mesh of 321 × 121 points is created using a hyperbolic grid
generation technique and 64 grid points are located on the cylinder surface.

A periodic boundary condition is used at the branch cut and a convective outflow
condition, ∂ui/∂t+ c∂ui/∂x = 0, is used for the outflow boundary condition (Pauley,
Moin & Reynolds 1990), where c is the space-averaged streamwise velocity at the exit.
This boundary condition allows vortices to smoothly pass away out of computational
domain. Dirichlet boundary conditions are used at far-field boundaries and also at
the cylinder surface.

The current mesh and domain size have been determined from an extensive study
of the numerical parameters (e.g. computational domain size, number of grid points,
skewness of the computational mesh, etc.). We have found from this study that the
domain size in the y-direction is more critical in accurately predicting the Strouhal
number than the domain size in the streamwise (x) direction. The predicted Strouhal
numbers at 50 6 Re 6 160 were in excellent agreement with those obtained by
Williamson (1989) and Henderson (1997) (see also Kwon & Choi 1996). Doubling
the domain size and grid points in both directions changed the predicted Strouhal
number by less than 0.5%.

For all cases investigated in this study, we have used a computational time step,
∆t = 0.015, which corresponds to CFL ≈ 1. About two Newton iterations are needed
to solve the discretized nonlinear momentum equations. We have also simulated the
flow with half the time step, which resulted in only 0.1% change of the predicted
drag coefficient. The CPU time required is about 3.5 CRAY YMP C90 seconds per
time step.

3. Problem setting
The phenomenon of vortex shedding behind a circular cylinder at low Reynolds

numbers is very interesting. At a very low Reynolds number (Re� 1), flow around a
circular cylinder is steady and symmetric upstream and downstream. As the Reynolds
number increases, the upstream–downstream symmetry disappears and two attached
eddies appear behind a cylinder. These eddies grow bigger with increasing Reynolds
number. For Re & 47, unsteadiness arises spontaneously even though all the imposed
conditions are being held steady and vortex shedding appears behind the circular
cylinder, resulting in the increase of the pressure drag. In two-dimensional flow, as
Re increases, drag of a circular cylinder increases (Tritton 1987; Henderson 1995).

Fornberg (1980) simulated the flow past a circular cylinder using a steady code and
obtained the drag coefficient of Cd = 1.058 at Re= 100. In experiments, however, Cd
varies from 1.26 to 1.40 at Re = 100 (Oertel 1990; Panton 1996) which is much larger
than the numerical simulation result of Fornberg. This difference is mainly due to the
existence of vortex shedding behind a circular cylinder which cannot be simulated
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Figure 1. Grid system, flow geometry and coordinate system along with boundary conditions.

correctly by the steady solution. Recently, there have been many numerical studies
on flow behind a circular cylinder using an unsteady Navier–Stokes code and they
accurately predicted vortex shedding (see, for example, Park et al. 1994; Henderson
1995; Kwon & Choi 1996; Henderson 1997). Henderson (1995) and Kwon & Choi
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Figure 2. Time-averaged pressure coefficients on the cylinder surface: ——–, inviscid flow (pt);
– – – –, Re = 100; ········, Re = 160. Here, θ = 180◦ and 360◦ correspond to the stagnation and base
points, respectively.

(1996) obtained the drag coefficients of 1.35 and 1.337 at Re = 100, respectively,
which are closer to the result of experiments. From these results, it is clear that there
is a close relation between vortex shedding and the drag of a circular cylinder.

We, therefore, define three cost functionals to control vortex shedding which would
be expected to reduce the drag of a circular cylinder. These cost functionals are
functions of the actuation φ (blowing/suction on the cylinder surface in the present
study)

J1(φ) =

∫
−p(θ)|r=R cos θR dθ, (3.1)

J2(φ) =
1

2

∫ (
pt − p(θ)|r=R

)2
R dθ, (3.2)

J3(φ) =
1

2

∫ (
∂p(θ)

∂θ

∣∣∣∣
r=R

)2

R dθ, (3.3)

where R is the cylinder radius, p(θ)|r=R is the pressure on the cylinder surface and pt
is a target pressure on the cylinder surface.
J1 is the instantaneous pressure drag of a circular cylinder, which increases due

to vortex shedding, and thus decreasing J1 directly reduces the pressure drag.
One should, however, note that total drag is composed of the pressure drag and
the skin-friction drag. Reducing the pressure drag, therefore, does not guaran-
tee reduction of total drag. One may also consider a cost functional defined as
J(φ) = (1/T )

∫ T
0

∫ −p(θ)|r=R cos θR dθ dt. This cost functional is associated with op-
timal control (rather than suboptimal control). The optimal control approach of
minimizing or maximizing the cost functional in a global time period requires the
iterative solutions of the Navier–Stokes equations and their adjoint on the whole and
large interval (0, T ) as well as the storage of the velocity and adjoint velocity fields
for the iterative solutions (see Abergel & Temam 1990). Such computations are out
of reach at this time.

Second, J2 is the square of the difference between the target pressure and the real
pressure of a circular cylinder. In this study, we consider the inviscid flow pressure
on the cylinder surface as the target pressure. Figure 2 shows the time-averaged
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pressure distributions on the cylinder surface for inviscid flow and viscous flows
at Re = 100 and 160, where Cp = (p − p∞)/( 1

2
ρu2∞) is the time-averaged pressure

coefficient, ρ is the density, and p∞ and u∞ are the free-stream pressure and free-
stream velocity, respectively. From this figure, we can easily note that according to the
inviscid theory, a circular cylinder has no drag and lift because there are no pressure
difference between upstream and downstream and no shear force on the cylinder
surface. Real viscous flow past a circular cylinder, however, has a pressure difference
between upstream and downstream and also has a shear force on the cylinder surface,
resulting in mean drag and drag/lift fluctuations. We can, therefore, easily predict that
when the real pressure on the cylinder surface is forced to be the same as the inviscid
flow pressure, there will be no pressure drag of the cylinder. Hence, decreasing J2

is expected to reduce the drag of a circular cylinder. On the other hand, one may
also define another unsteady flow as the desired low drag state. For example, for the
control of vortex shedding at Re= 160, one could set up the target pressure on the
cylinder surface as the pressure at Re= 100, because the drag at Re= 100 is smaller
than that at Re= 160. Implementation of this kind of target pressure into the control
procedure is straightforward and very similar to that shown in § 4.

Finally, J3 is the square of the pressure gradient on the cylinder surface. From
figure 2, we can see that the pressure gradient on the cylinder surface of the inviscid
flow is much larger than that of real flow. Therefore, increasing J3 is expected to
reduce the drag of a circular cylinder. In transonic flow, however, increasing the
pressure gradient on the cylinder surface does not necessarily decrease drag due to
the existence of shock waves which significantly change the pressure distribution on
the surface. This high-speed flow case is not considered in the present study.

Hence, decreasing J1 and J2 or increasing J3 would be expected to control vortex
shedding behind a circular cylinder and thus reduce drag.

4. Suboptimal feedback control procedure
4.1. Fréchet differential states

As mentioned in § 3, the cost functionals J1, J2 and J3 are functions of the actuation φ,
and, thus, to minimize or maximize the cost functionals, we need to find the Fréchet
differential states of the velocity and pressure, (qi, ρ), using the Fréchet differential
(Finlayson 1972),

qi =
Dun+1

i

Dφn+1
φ̃
n+1
, (4.1)

ρ =
Dpn+1

Dφn+1
φ̃
n+1
, (4.2)

with

Df(φ)n+1

Dφn+1
φ̃
n+1

= lim
ε→ 0

f(φ+ εφ̃)n+1 − f(φ)n+1

ε
, (4.3)

where φ̃ is an arbitrary perturbation field to φ and the superscript n+ 1 denotes the
control time step at which a new actuation is applied.

To find (qi, ρ), we should solve the Fréchet differential equations which are derived
from the Navier–Stokes and continuity equations with given boundary conditions.
There are two ways to do this. One way is to solve the linearized adjoint Navier–
Stokes equations with adjoint boundary conditions which are derived from the Fréchet
differential equations and the cost functional (Choi et al. 1993b). The other way
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is to directly solve the Fréchet differential equations with the use of the Fourier
transformation (Lee et al. 1998). These two methods yield the same solutions of the
Fréchet differential states. The latter method is more straightforward than the first,
but it is restricted to very simple flow geometry problems such as channel or cylinder,
owing to the Fourier transformation. In the present study, we use the latter method.

The problem under consideration is a two-dimensional circular cylinder flow, for
which the governing equations are the incompressible Navier–Stokes and continuity
equations with boundary conditions

∂ui

∂t
+
∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, (4.4)

∂ui

∂xi
= 0, (4.5)

with
ur|r=R = φ, uθ|r=R = 0,

ur|r→∞ = cos θ, uθ|r→∞ = − sin θ,

}
(4.6)

where r and θ are the cylindrical coordinates, ur and uθ are the velocities in the (r, θ)
directions, respectively, and φ is the control input which is the surface-normal velocity
(blowing/suction) on the cylinder surface. All variables are non-dimensionalized by
the free-stream velocity u∞ and the cylinder diameter d.

Formulation of a suboptimal feedback control procedure depends on the numerical
time discretization of the Navier–Stokes equations (Choi et al. 1993b). We choose
the Crank–Nicolson scheme for the linear terms and a Runge–Kutta scheme for the
nonlinear terms to yield a discretized form of (4.4)–(4.6)

un+1
i +

∆tc
2

∂pn+1

∂xi
− ∆tc

2Re

∂2un+1
i

∂xj∂xj
= RHSn, (4.7)

∂un+1
i

∂xi
= 0, (4.8)

with

ur|n+1
r=R = φn+1, uθ|n+1

r=R = 0,

ur|n+1
r→∞ = cos θ, uθ|n+1

r→∞ = − sin θ,

}
(4.9)

where ∆tc is the control time interval (i.e. at every ∆tc the control input φ is updated)
and RHSn is the nonlinear term and the explicit parts of the pressure gradient and
viscous terms at control time step n. In this way, the actuation values are determined
from the pressure information only on the cylinder surface (see § 4.2). Neglecting the
nonlinear terms in constructing a controller may miss important flow dynamics, but
Lee et al. (1998) found from numerical tests with the full nonlinear terms included
that the contribution from the nonlinear terms is negligible in the boundary control of
turbulent channel flow with a short time interval ∆tc; it turns out that the conservation
of mass due to the wall actuation dominates the near-wall dynamics.

Note that the time discretization method adopted for constructing the suboptimal
feedback controller does not have to be the same as the time integration method for
obtaining accurate flow fields in time, and should be determined from consideration
of the practical implementation of the control algorithm (see Choi et al. 1993b). Note
also that the control time interval ∆tc is not necessarily the same as the computational
time step ∆t (see § 5).
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Next, the Fréchet differential of (4.7)–(4.9) yields the governing equations for the
Fréchet differential states (qi, ρ) with boundary conditions

qi +
∆tc
2

∂ρ

∂xi
− ∆tc

2Re

∂2qi

∂xj∂xj
= 0, (4.10)

∂qi

∂xi
= 0, (4.11)

with

qr|r=R = φ̃, qθ|r=R = 0,

qr|r→∞ = 0, qθ|r→∞ = 0,

}
(4.12)

where qi and ρ are defined in (4.1) and (4.2). Note that D{RHSn} /Dφn+1 φ̃
n+1

= 0.
By taking the divergence of (4.10) and using (4.11), we get a Laplace equation

for ρ,

∂2ρ

∂xi∂xi
= 0. (4.13)

From (4.10)–(4.13), we obtain the following analytic solution of the Fréchet differ-
ential state equations using the Fourier transformation in the circumferential direction
(see Appendix A):

q̂r,k= 0 =
ˆ̃φk= 0

K1 (mR)
K1 (mr) , (4.14)

q̂θ,k= 0 = 0, (4.15)

ρ̂k= 0 = ρ̂r=R,k= 0(= constant), (4.16)

q̂r,k 6= 0 = ˆ̃φk 6= 0

A
(
R/r

)|k|
+ R|k|K|k| (mr)
B r

, (4.17)

q̂θ,k 6= 0 =
i|k|
k

ˆ̃φk 6= 0

−A (R/r)|k| + {R|k|K|k| (mr)− mRrK|k|+1 (mr)
}

B r
, (4.18)

ρ̂k 6= 0 =
2

∆tc

1

|k|
ˆ̃φk 6= 0

A

B

(
R

r

)|k|
, (4.19)

with

A = R|k|K|k| (mR)− mR2K|k|+1 (mR) , (4.20)

B = 2|k|K|k| (mR)− mRK|k|+1 (mR) , (4.21)

m =

√
2Re

∆tc
, (4.22)

where k is the wavenumber in the circumferential direction, q̂r,k , q̂θ,k , ρ̂k and ˆ̃φk
are the Fourier coefficients of qr , qθ , ρ and φ̃, respectively, and K|k| is the modified

Bessel function of the second kind, of order |k|. Note that ˆ̃φk= 0 and ρ̂r=R,k= 0 are the

mean values of φ̃ and ρ on the cylinder surface, respectively. From the continuity
((4.8) and (4.11)) and boundary conditions specified in this study ((4.9) and (4.12)),

it is clear that φ̂k= 0(mean value of φ) = ˆ̃φk= 0 = 0. It should be noted however that
non-zero mean values of φ can be easily implemented in the suboptimal control



132 C. Min and H. Choi

Actuation φ

Actuation φ

θ = α
θ = β

θ = β
θ = α

Sensing

θ = δ

θ = γ

θ

R
u¢

r

Figure 3. Schematic of the sensing and actuation.

procedure by assigning a different far-field (or outflow) boundary condition such as
ur|n+1

r=R∞ = cos θ + φR/R∞ (Choi 1998).

4.2. Formulation of actuation

After finding the Fréchet differential states, we obtain the actuation value φ of
minimizing or maximizing the cost functional J by the use of a gradient algorithm,

φn+1l+1 − φn+1l = %
DJ
(
φn+1l

)
Dφn+1

, (4.23)

where the superscript l denotes the iteration index, and % is the descent/ascent
parameter which is negative for minimization and positive for maximization. Then
the cost functional J is minimized or maximized by (4.23) as follows:

J
(
φn+1l+1

)
≈ J

(
φn+1l

)
+
DJ
(
φn+1l

)
Dφn+1

(
φn+1l+1 − φn+1l

)
, (4.24)

J
(
φn+1l+1

)
≈ J

(
φn+1l

)
+ %

∣∣∣∣∣DJ
(
φn+1l

)
Dφn+1

∣∣∣∣∣
2

. (4.25)

In this section, we restrict the sensing and actuation to local regions of the cylinder
surface. That is, the actuation φ is applied to a region of α 6 θ 6 β and the sensing
is restricted to a region of γ 6 θ 6 δ (see, for example, figure 3).

4.2.1. Cost functional J1

As mentioned in § 3, the cost functional J1 is the pressure drag of a circular cylinder.
Let us rewrite (3.1) in the more convenient mathematical form

J1 (φ1) =

∫ 2π

0

P1R dθ, (4.26)

where

P1 =

{ −p|r=R cos θ for γ 6 θ 6 δ

0 otherwise.
(4.27)
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Taking the Fréchet derivative of (4.26) and (4.27) with the use of (4.2) yields

DJ1 (φ1)

Dφ1

φ̃1 =

∫ 2π

0

DP1

Dφ1

φ̃1 R dθ (4.28)

with

DP1

Dφ1

φ̃1 =

{ −ρ|r=R cos θ for γ 6 θ 6 δ

0 otherwise.
(4.29)

From (4.16) and (4.19), we rearrange ρ̂|r=R such that

ρ̂ (k) |r=R = â (k) ˆ̃φ1 (k) (4.30)

with

â (k) =


Y0(= constant) for k = 0

2

∆tc

1

|k|Yk for k 6= 0,
(4.31)

Y0 =
ρ̂r=R,k= 0

ˆ̃φ1,k= 0

, (4.32)

Yk =
A

B
. (4.33)

Now, we obtain ρ(θ)|r=R from (4.30) using the convolution integral

ρ (θ) |r=R =
1

2π

∫ 2π

0

(
a (θ − τ) φ̃1 (τ)

)
dτ. (4.34)

From (4.29) and (4.34), (4.28) becomes

DJ1 (φ1)

Dφ1

φ̃1 =

∫ δ

γ

{
− 1

2π

∫ 2π

0

(
a (θ − τ) φ̃1 (τ)

)
dτ cos θ

}
R dθ

=

∫ 2π

0

{
1

2π

∫ δ

γ

−a (τ− θ) cos τ dτ

}
φ̃1 (θ)R dθ. (4.35)

For an arbitrary φ̃1, we obtain the following equation:

DJ1 (φ1)

Dφ1

=
1

2π

∫ δ

γ

−a (τ− θ) cos τ dτ. (4.36)

Note that DJ1(φ1)/Dφ1 is a function of θ only.
Then, the gradient algorithm (4.23), for minimization, becomes

φl+1
1 (θ)− φl1 (θ) = %

DJ1

(
φl1
)

Dφ1

, (4.37)

where % < 0. Note that in general one should iterate the procedure to obtain a
converged blowing/suction value φ and minimum J . However, it is not practical to
do iteration because time goes forward continuously in real situations. Therefore,
only one iteration is allowed for practical implementation, which, of course, will not
guarantee a minimum J . For the effect of the number of iterations, see Choi et al.
(1993b).

Since we do not allow any iteration for practical implementation, the actuation
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φ1(θ) of decreasing J1 becomes

φ1(θ) =

 −
%

2π

∫ δ

γ

a (τ− θ) cos τ dτ for α 6 θ 6 β

0 otherwise.

(4.38)

Here the actuation φ1 is applied to the region α 6 θ 6 β. Note that the convolution
integral in (4.38) does not include any flow variables in time and is a function of θ
only. The actuation φ1, therefore, does not require any flow information such as the
wall pressure (i.e. no sensing is required) and is steady in time.

When we require the sensing and actuation to take place all over the cylinder
surface (i.e. (γ, δ) = (0, 2π) and (α, β) = (0, 2π)), φ1(θ) becomes (for the details, see
Appendix B)

φ1 (θ) = −% 2

∆tc
Y1 cos θ, (4.39)

with

Y1 =
RK1 (mR)− mR2K2 (mR)

2K1 (mR)− mRK2 (mR)
. (4.40)

Note that Y1 is constant and thus the actuation of decreasing J1 with all surface
sensing and actuation is a cosine function.

4.2.2. Cost functional J2

As mentioned in § 3, the cost functional J2 is the square of the difference between
the target pressure (pt) and the real pressure (p) on the cylinder surface. Let us rewrite
(3.2) as was done in § 4.2.1:

J2 (φ2) =
1

2

∫ 2π

0

P 2
2R dθ, (4.41)

where

P2 =

{
pt − p|r=R for γ 6 θ 6 δ

0 otherwise.
(4.42)

The actuation value φ2(θ) of decreasing J2 can be easily obtained by following the
same procedure in § 4.2.1. The blowing/suction value φ2(θ) of decreasing J2 is

φ2(θ) =

 − %

2π

∫ 2π

0

P2(τ)a (τ− θ) dτ for α 6 θ 6 β

0 otherwise,
(4.43)

where % < 0. Note that the convolution integral in (4.43) requires pressure information
on the cylinder surface for γ 6 θ 6 δ. Therefore, sensing of the instantaneous wall
pressure on γ 6 θ 6 δ is necessary to determine the actuation φ2 on α 6 θ 6 β.

4.2.3. Cost functional J3

As mentioned in § 3, the cost functional J3 is the square of the pressure gradient
on the cylinder surface. Let us rewrite (3.3) as was done in § 4.2.1:

J3 (φ3) =
1

2

∫ 2π

0

P 2
3R dθ, (4.44)
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where

P3 =

{
∂p/∂θ|r=R for γ 6 θ 6 δ

0 otherwise.
(4.45)

The actuation value φ3(θ) of increasing J3 can be obtained by following the same
procedure as in § 4.2.1. The blowing/suction value φ3(θ) of increasing J3 is

φ3(θ) =

 %

2π

∫ 2π

0

P3(τ)b (τ− θ)dτ for α 6 θ 6 β

0 otherwise,
(4.46)

where % > 0 and the Fourier coefficient of b(θ) is

b̂ (k) = ikâ(k) =


0 for k = 0

2

∆tc

ik

|k|Yk for k 6= 0.
(4.47)

Note that sensing of the instantaneous wall pressure gradient on γ 6 θ 6 δ is required
to determine the actuation φ3 on α 6 θ 6 β.

In the present study, we fix the maximum value of |φ(θ)| (maximum blowing
or suction speed relative to the free-stream velocity), φmax = max06θ<2π |φ(θ)|, and
change % at every control time step to satisfy this constraint.

As is shown in this section, our approach bypasses the adjoint problem and directly
solves the Fréchet differential equations using the Fourier transformation. In order
to obtain the control input φ, one has to know the Fréchet derivative of the cost
functional DJ/Dφ (see (4.23)) which is usually a function of the Fréchet differential
states (qi, ρ). With the adjoint approach, DJ/Dφ is obtained by solving the linearized
adjoint Navier–Stokes equations with appropriate adjoint boundary conditions which
are closely associated with the definition of the cost functional (see Choi et al. 1993b).
Thus, one has to solve the linearized adjoint Navier–Stokes equations whenever the
cost functional is newly defined. With the present approach, however, the Fréchet
differential states (qi, ρ) are directly obtained from the Fréchet differential equations
and thus knowledge of the cost functional is not required to determine qi and ρ
(as shown in § 4.1). Once qi and ρ are obtained, DJ/Dφ can be easily determined
(as shown in § 4.2). The disadvantage of the present method is that this approach is
limited to very simple flow geometry problems such as channels or cylinders. Complex
geometry problems such as flow over a backward-facing step cannot be solved by
the present approach because of the Fourier transformation procedure and should
be solved by the adjoint approach. Thus, the adjoint approach is a general tool for
optimization problems. For the optimization problem investigated in this paper, these
two approaches produce the same control input φ.

5. Results
As was mentioned in § 4, the pressures on the cylinder surface are measured at

γ 6 θ 6 δ and the blowing and suction are applied at α6 θ 6 β. In § 5.1, sensings
and actuations are carried out all over the cylinder surface, i.e. (α, β) = (γ, δ) = (0, 2π).
Local sensings and actuations are performed in § 5.2. Finally, open-loop controls are
investigated in § 5.3.

For all cases investigated in this study, we have used the computational time
step ∆t = 0.015, and the control time interval ∆tc = 0.06. That is, the sensing
and actuation are updated at every four computational time steps. We have also
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Figure 4. Time histories of the cost functional with (α, β) = (γ, δ) = (0, 2π): ········, φmax = 0.1;
——–, 0.2; −·−·−, 0.3; – – – –, 0.4. (a) J1; (b) J2; (c) J3.

investigated a few different combinations of ∆t and ∆tc, but the results showed only
a slight change compared to those obtained from ∆t = 0.015 and ∆tc = 0.06. The
Reynolds numbers investigated in this study (two-dimensional computations) are 100
and 160; according to the recent result by Henderson (1997), the two-dimensional
wake becomes absolutely unstable to long-wavelength spanwise perturbations and
bifurcates to a three-dimensional flow at Re ≈ 190 (mode A; see also Williamson
1988). All controls begin at t = 30 and the maximum blowing/suction value relative to
the free-stream velocity, φmax = max06θ<2π |φ(θ)|, is kept constant during the control.

5.1. Sensing and actuation all over the cylinder surface

We have applied the actuation values of decreasing J1 and J2 and of increasing J3,
respectively, to the flow of a circular cylinder at Re = 100. The target pressure in J2

is taken to be the inviscid flow pressure, pt = p∞ + 1
2
ρu2∞(1− 4 sin2 θ) (see figure 2).

Figure 4 shows the time histories of the cost functional with blowing/suction. As
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Figure 5. Actuation profiles: (a) φ1,max = 0.1; (b) φ2,max = 0.1; (c) φ3,max = 0.1. Here, θ = 180◦
corresponds to the stagnation point.

the controls are applied at t> 30, J1 and J2 decrease and J3 increases at a given φmax
compared to the case of no control (t < 30). Also from figure 4, with increasing φmax
J1 and J2 further decrease and J3 increases. Abrupt changes of J near t = 30 are
due to the abrupt starting of the control. As will be shown later, vortex shedding
completely disappears at large φmax.

Figure 5 shows profiles of blowing/suction approximately for a half-cycle of vortex
shedding (in figure 4, 112.2 6 t 6 115.2 for J1 and J2, 113.4 6 t 6 116.4 for
J3, respectively) in the case of φmax = 0.1. Note that φ1 does not change in time,
whereas φ2 and φ3 change periodically in time. The unsteadiness of the actuations
disappears when φ2,max and φ3,max are sufficiently large to make the flow steady (no
vortex shedding). It is interesting to note that the profiles of blowing/suction are very
different among three cost functionals. That is, for φ1 blowing is applied to the rear
part and suction is to the front part of the cylinder surface. For φ2, blowing is applied
to the rear part and suction is to the upper and lower parts of the cylinder surface.
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For φ3, blowing is applied to the front part and suction is to the upper and lower
parts of the cylinder surface. As we will see later, all of these blowing/suction profiles
successfully control vortex shedding and thus reduce drag.

Figures 6 and 7 show the time histories of the drag and lift coefficients with
blowing/suction, respectively. For all actuations, the total drag of the cylinder is
significantly reduced and the lift fluctuation of the cylinder is also reduced successfully.
As anticipated in § 3, decreasing J1 and J2 and increasing J3 result in drag reduction.
It is interesting to note the variation of Cd with varying φmax in figure 6. In the cases
of J2 and J3, the Cd decrease further with increasing φmax. The same trend of Cd
variation, however, does not appear in the case of J1, i.e. Cd first decreases and then
increases as φ1,max increases (at t = 120, Cd = 1.26, 1.21, 1.23 and 1.27 for φ1,max =
0.1, 0.2, 0.3 and 0.4, respectively).

The different behaviours of Cd in cases J1, J2 and J3 can be easily explained by
examining the components of total drag. Figures 8(a), 8(b) and 8(c) show the time
histories of the pressure drag and skin-friction drag coefficients with blowing/suction
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in the cases of J1, J2 and J3, respectively. As φmax increases, Cdp further decreases and
Cdf increases for J1, J2 and J3. However, the amount of reduction in Cdp in the case
of J1 is much smaller than those in the cases of J2 and J3. Since Cd is the sum of Cdp
and Cdf , a decrease of Cdp does not always guarantee a decrease of Cd. In order to
reduce the pressure drag, one should increase the velocity gradient along the cylinder
surface, which causes a separation delay. In this case, however, the skin-friction drag
inevitably increases. Thus, inclusion of the skin-friction drag in the definition of J1

does not always improve the result because decreasing the skin-friction drag increases
the pressure drag.

Figure 9 shows the time-averaged velocity gradients along the cylinder surface
with and without control. With control, the blowing and suction indeed increase the
velocity gradient and thus delay the separation (see below), as φmax increases. For the
range of φmax investigated in this study, the decrease of Cdp is larger than the increase
of Cdf in the cases of J2 and J3, resulting in the monotonic decrease of total drag,
whereas a non-monotonic behaviour is observed in the case of J1 (figure 6). Note
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that, for all J , the Cl monotonically decrease due to attenuation of vortex shedding
as φmax increases (figure 7).

For a given φmax, decreasing J2 provides the largest drag reduction among the three
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cost functionals (figure 6). When φmax = 0.2, for example, about 9%, 28% and 17%
drag reductions are obtained for J1, J2 and J3, respectively. The efficiency of control is
represented as the ratio of saved power to input power, 2(Cd0

−Cd)/ ∫ 2π

0
(|φ|3+2|pφ|)dθ,

where Cd0
is the drag coefficient without control. The efficiencies are 0.6, 2.2 and 1.7

for J1, J2 and J3, respectively.
It is interesting to note that the use of J1 produced less pressure-drag reduction

in comparison to J2 and J3, even though J1 is directly related to the pressure drag.
The cause of this may be two-fold. First, our control procedure looks for a local
minimum or maximum of the cost functional. Because of the nonlinearity of the
Navier–Stokes equations, the optimization problems of fluid flow are non-convex
and thus the optimal control procedure does not guarantee the global minimum or
maximum of the cost functional (Abergel & Temam 1990). In the present study, we
used a gradient algorithm to look for the best control providing a local minimum
or maximum of the cost functional (not a global one), and thus minimizing J2 or
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maximizing J3 might produce a larger drag reduction than minimizing J1. The second
is that in this study we neglected the nonlinear terms in the Fréchet differential
equations (4.10) for the practical implementation and thus inclusion of the nonlinear
terms in (4.10) may change the drag-reduction performance. In that case, however,
velocity information in the flow domain is required to determine the control input φ,
which is clearly impractical in real situations.

Figure 10 shows the time-averaged pressure coefficients with blowing/suction. It can
be seen that the Cp profiles of J1, J2 and J3 are very different from one another. For
J1, Cp decreases near the stagnation point and increases at other surface locations as
φ1,max increases, which certainly decreases the pressure drag compared to no control.
For J2, Cp decreases near the front upper and lower parts and increases near the rear
part as φ2,max increases. Decrease of the pressure at the front part and significant
increase of the base pressure lead to the largest reduction of the pressure drag among
the three cost functionals (figure 8). Also it can be seen that, in the case of J2, the
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Figure 11. Instantaneous vorticity contours at Re= 100 with (α, β) = (γ, δ) = (0, 2π): (a) no control;
(b) φ2,max = 0.1; (c) 0.2; (d) 0.4. Contours are from −5.5 to 5.5 by increments of 0.2. Positive contours
are dashed.

profile of Cp approaches that of the inviscid flow pressure coefficient with increasing
φ2,max. Finally, for J3, Cp significantly decreases near the front part of the cylinder as
φ3,max increases, whereas it shows a slight variation at the rear part as compared to
no control. Thus, the pressure drag reduction is caused by the pressure decrease near
the front part of the cylinder in the case of J3. As is shown in figure 10, the separation
point is delayed by control in all cases.

Figure 11 shows the instantaneous vorticity contours at Re = 100 with blow-
ing/suction in the case of J2. Vortex shedding behind the cylinder becomes weak at
small φ2,max and completely disappears at φ2,max > 0.2. For J1 and J3, not shown here,
vortex shedding behind the cylinder also became weaker with increasing φmax, and,
at 0.3 6 φmax 6 0.4, it completely disappeared for J1 but still existed for J3.

Roussopoulos (1993) and Park et al. (1994) reported that at low Reynolds numbers
(Re 6 60) their active control methods worked very well, resulting in no vortex
shedding behind a circular cylinder. With increasing Reynolds number, however,
vortex shedding behind the cylinder was not controlled very well. We, therefore, have
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Figure 12. Time histories of the drag and lift coefficients with (α, β) = (γ, δ) = (0, 2π): ········, Re= 160
with φ2,max = 0.1; ——–, Re = 160 with φ2,max = 0.2; — – —, Re = 160 with φ2,max = 0.3; – – – –,
Re = 100 with φ2,max = 0.2; −·−·−, Re = 100 with φ2,max = 0.3. (a) Cd; (b) Cl .

simulated the flow at Re = 160 in the case of J2 in order to see how a suboptimal
feedback control method affects the flow at a different Reynolds number.

Figure 12 shows the time histories of the drag and lift coefficients with blow-
ing/suction at Re = 100 and 160. When the Reynolds number increases from 100 to
160 in the case of no control, the drag/lift fluctuations significantly increase although
the time-averaged mean drag coefficients are nearly the same (compare the solid line
(Re = 160) with the dashed line (Re = 100) at t < 30 in figure 12). We can clearly see
that the mean drag and the drag/lift fluctuations are successfully reduced by control
at Re = 160. Moreover, the reductions of Cd at Re = 160 with φ2,max = 0.2 and 0.3
are larger than those at Re = 100 with φ2,max = 0.2 and 0.3. The efficiencies of control
for these cases are 2.8 and 2.2 at Re = 160 with φ2,max = 0.2 and 0.3, and 2.2 and 1.5
at Re = 100 with φ2,max = 0.2 and 0.3, respectively. The efficiency, therefore, becomes
better at a higher Reynolds number. On the other hand, figure 12(b) shows that lift
fluctuations still exist at Re = 160 with φ2,max = 0.1 and 0.2 and disappear with
φ2,max = 0.3, whereas there is no lift fluctuation at Re = 100 with φ2,max = 0.2 and 0.3,
indicating that vortex shedding is more difficult to control at a higher Reynolds num-
ber (see also figure 13), which is the same conclusion as obtained by Roussopoulos
(1993) and Park et al. (1994).

Figure 13 shows the instantaneous vorticity contours at Re = 160 with blow-
ing/suction in the case of J2. With φ2,max = 0.2, vortex shedding becomes significantly
weak but still exists, resulting in the existence of lift fluctuations (figure 12b). With
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Figure 13. Instantaneous vorticity contours at Re= 160 with (α, β) = (γ, δ) = (0, 2π): (a) no control;
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φ2,max = 0.3, however, vortex shedding completely disappears and there is no drag/lift
fluctuation.

5.2. Local sensing and actuation

Results shown in § 5.1 are obtained from the sensing and actuation all over the cylinder
surface. The formulation in § 4.2, however, is derived for sensing and actuation at
arbitrary local areas on the cylinder surface. Also in view of practical implementation,
local sensing and actuation are more useful. In this subsection, we show two examples
of local sensing and actuation in the case of J2 with φ2,max = 0.2.

Figure 14 shows a schematic of local sensing and actuation. The first case (case
A) is sensing and actuation at the same areas, upper and lower parts of the cylinder
surface: (α, β) = (γ, δ) = (3π/8, π/2) and (3π/2, 13π/8). The second case (case B) is
sensing at the rear part and actuation at the upper and lower parts of the cylinder
surface: (α, β) = (3π/8, π/2) and (3π/2, 13π/8) and (γ, δ) = (−π/8, π/8). Note that the
actuation areas of the two cases are the same.

Figure 15 shows the time histories of the drag and lift coefficients with local sensing
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and actuation. In both cases, drag is reduced successfully. Drag reductions of cases
A and B are about 12%, which is nearly half the drag reduction obtained from all
surface sensing and actuation (28%). The efficiencies for cases A and B are 1.8 and
2.2, respectively. Considering that the sensing and actuation areas are reduced by a
factor of 8, the amount of drag reduction from local sensing and actuation is quite
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significant. In both cases A and B, the strength of vortices is reduced compared to no
control.

5.3. Open-loop control

In general, feedback control is more efficient than non-feedback (or open-loop)
control. However, feedback control requires instantaneous sensing of flow variables,
which is quite difficult in practical situations. Therefore, one would like to obtain a
simple open-loop control law without any flow sensing. In this section, simple and
steady open-loop control laws of decreasing J2 and increasing J3 are obtained by
averaging the unsteady actuations shown in figures 5(b) and 5(c) in time and applied
to the flow behind a circular cylinder at Re = 100.

Figure 16 shows the time-averaged actuation profiles of decreasing J2 and increasing
J3. Note that the time-averaged actuation profiles are slightly different from unsteady
actuations (figure 5b, c). Figures 17 and 18 show the time histories of the cost
functional and the drag and lift coefficients with open-loop controls, respectively,
together with feedback controls. From figure 17, it is clear that open-loop controls
also work well for decreasing J2 and increasing J3. The mean drag and drag/lift
fluctuations are also significantly reduced with open-loop controls. The efficiencies
of open-loop controls, therefore, are nearly the same as those of feedback controls.
Moreover, it is interesting to note from figure 18 that for J2, drag reduction is a little
larger with open-loop control than with feedback control.

Results shown in this section are encouraging for the following reason. Once
unsteady actuation profiles are obtained from a suboptimal feedback control for a
bluff-body control problem, it is straightforward to obtain an open-loop actuation
profile from them. Then a similarly successful result is expected from open-loop
control which is much simpler and easier than feedback control.

6. Summary
The objective of this study was to develop a systematic method of controlling

vortex shedding behind a bluff body using control theory. A suboptimal feedback
control procedure for local sensing and local actuation was developed and applied to
the flow behind a circular cylinder. The location of sensors for feedback was limited
to the cylinder surface, and the control input from actuators was the blowing and
suction on the cylinder surface. The three cost functionals to be minimized (J1 and
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Figure 17. Time histories of the cost functional at Re = 100 with (α, β) = (γ, δ) = (0, 2π) and
φmax = 0.1: ——–, open-loop control; – – – –, feedback control. (a) J2; (b) J3.
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Figure 18. Time histories of the drag and lift coefficients at Re = 100 with (α, β) = (γ, δ) = (0, 2π)
and φmax = 0.1: ——–, open-loop control; – – – –, feedback control. (a) J2; (b) J3.
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J2) or maximized (J3) were the pressure drag of a cylinder (J1), the square of the
difference between the target pressure (inviscid flow pressure) and real flow pressure
on the cylinder surface (J2), and the square of the pressure gradient on the cylinder
surface (J3), respectively. Given the cost functionals, the flow variable to be measured
by sensors and the control input from actuators were determined from the suboptimal
feedback control procedure.

First, we applied blowing/suction to the flow of a circular cylinder at Re = 100.
For all actuations, J1 and J2 successfully decreased and J3 increased. Also, the mean
drag and drag/lift fluctuations significantly decreased for all actuations. In the cases
of J2 and J3, the Cd decreased further with increasing φmax, whereas the same trend
of the Cd variation did not appear in the case of J1. For a given φmax, reducing J2

provided the largest drag reduction among the three cost functionals.
We also simulated the flow at Re = 160 in the case of J2 in order to see how the

control affected the flow at a different Reynolds number. The mean drag and drag/lift
fluctuations were successfully decreased at Re = 160, and, moreover, the efficiency
of reducing drag became better at a higher Reynolds number. However, it was also
noted that vortex shedding was more difficult to control at a higher Reynolds number.

Two cases of local sensing and actuation were tested. One was with sensing and
actuation at the same areas of the upper and lower parts of the cylinder surface and
the other was with sensing at the rear part and actuation at the upper and lower
parts of the cylinder surface. Both cases showed successful drag reduction and the
strength of vortices was reduced by control.

By averaging the unsteady feedback actuations for J2 and J3 in time, simple and
steady open-loop control laws were established, by which successful drag reduction
was also achieved.

In two-dimensional laminar vortex shedding, flow patterns are periodic and pre-
dictable. Therefore, controlling vortex shedding at low Reynolds numbers is relatively
easy. In turbulent flow, however, the flow becomes much more complex and is fully
three-dimensional. A suboptimal feedback control of turbulent flow behind a circular
cylinder is being investigated with actuation on a spanwise slot located at the upper
and lower parts of the cylinder surface. The result will be reported in the future.

Financial supports from the academic research fund of the Korean Ministry of
Education (ME97-B-02) and the Creative Research Initiatives of the Korean Ministry
of Science and Technology are gratefully acknowledged.

Appendix A. Analytic solution of the Fréchet differential state equations
In a two-dimensional cylindrical coordinate, (4.10)–(4.13) become

qr +
∆tc
2

∂ρ

∂r
− ∆tc

2Re

(
∂2qr

∂r2
+

1

r

∂qr

∂r
+

1

r2

∂2qr

∂θ2
− 1

r2
qr − 2

r2

∂qθ

∂θ

)
= 0, (A 1)

qθ +
∆tc
2

1

r

∂ρ

∂θ
− ∆tc

2Re

(
∂2qθ

∂r2
+

1

r

∂qθ

∂r
+

1

r2

∂2qθ

∂θ2
− 1

r2
qθ +

2

r2

∂qr

∂θ

)
= 0, (A 2)

1

r
qr +

∂qr

∂r
+

1

r

∂qθ

∂θ
= 0, (A 3)

∂2ρ

∂r2
+

1

r

∂ρ

∂r
+

1

r2

∂2ρ

∂θ2
= 0, (A 4)
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with

qr|r=R = φ̃, qθ|r=R = 0,

qr|r→∞ = 0, qθ|r→∞ = 0.

}
(A 5)

The Fourier representations of (A 1)–(A 5) are

q̂′′r +
1

r
q̂′r −

(
2Re

∆tc
+
k2 + 1

r2

)
q̂r − 2ik

r2
q̂θ − Reρ̂′ = 0, (A 6)

q̂′′θ +
1

r
q̂′θ −

(
2Re

∆tc
+
k2 + 1

r2

)
q̂θ +

2ik

r2
q̂r − ik

r
Reρ̂ = 0, (A 7)

1

r
q̂r + q̂′r +

ik

r
q̂θ = 0, (A 8)

ρ̂′′ +
1

r
ρ̂′ − k2

r2
ρ̂ = 0, (A 9)

with

q̂r|r=R = ˆ̃φ, q̂θ|r=R = 0, q̂r|r→∞ = 0, q̂θ|r→∞ = 0,

qr =
∑
k

q̂re
ikθ, qθ =

∑
k

q̂θe
ikθ,

ρ =
∑
k

ρ̂ eikθ, φ̃ =
∑
k

ˆ̃φ eikθ,

 (A 10)

where q̂r , q̂θ , ρ̂ and ˆ̃φ are the Fourier coefficients of qr , qθ , ρ and φ̃, respectively, k
is the wavenumber in the θ-direction, and the prime denotes the differentiation with
respect to the r-direction.

A.1. Derivation of (4.14)–(4.16)

When k = 0, (A 6)–(A 10) become

q̂′′r +
1

r
q̂′r −

(
2Re

∆tc
+

1

r2

)
q̂r − Re ρ̂′ = 0, (A 11)

q̂′′θ +
1

r
q̂′θ −

(
2Re

∆tc
+

1

r2

)
q̂θ = 0, (A 12)

1

r
q̂r + q̂′r = 0, (A 13)

ρ̂′′ +
1

r
ρ̂′ = 0, (A 14)

with

q̂r|r=R, k= 0 = ˆ̃φk= 0, q̂θ|r=R, k= 0 = 0,

q̂r|r→∞, k= 0 = 0, q̂θ|r→∞,k= 0 = 0.

}
(A 15)

The general solution of (A 14) is

ρ̂k= 0 = X1 +X2 ln r. (A 16)

When r → ∞, ρ̂ should have a finite value, and thus X2 = 0. Therefore, the solution
of (A 14) is

ρ̂k= 0 = ρ̂r=R,k= 0 (= constant) . (A 17)
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Differentiation of (A 17) gives

ρ̂′k= 0 = 0. (A 18)

Substitution of (A 18) into (A 11) yields

q̂′′r +
1

r
q̂′r −

(
2Re

∆tc
+

1

r2

)
q̂r = 0. (A 19)

Note that (A 19) and (A 12) are modified Bessel equations, whose solutions are the
composition of the modified Bessel functions (Hildebrand 1976):

q̂r,k= 0 = X3I1 (mr) +X4K1 (mr) , (A 20)

q̂θ,k= 0 = X5I1 (mr) +X6K1 (mr) , (A 21)

where I1 and K1 are the modified Bessel functions of the first kind, of order 1, and
the second kind, of order 1, respectively, and

m =

√
2Re

∆tc
. (A 22)

From the boundary condition (A 15) we can determine the coefficients of (A 20)
and (A 21), yielding

q̂r,k= 0 =
ˆ̃φk= 0

K1 (mR)
K1 (mr) , (A 23)

q̂θ,k= 0 = 0. (A 24)

A.2. Derivation of (4.17)–(4.19)

When k 6= 0, (A 6)–(A 10) become
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1

r
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2Re
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r2
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2ik
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r
Re ρ̂, (A 26)

1

r
q̂r + q̂′r +

ik

r
q̂θ = 0, (A 27)

ρ̂′′ +
1

r
ρ̂′ − k2

r2
ρ̂ = 0, (A 28)

with

q̂r|r=R, k 6= 0 = ˆ̃φk 6= 0, (A 29)

q̂θ|r=R, k 6= 0 = 0, (A 30)

q̂r|r→∞, k 6= 0 = 0, (A 31)

q̂θ|r→∞, k 6= 0 = 0. (A 32)

The general solution of (A 28) is

ρ̂ = X7r
k +X8r

−k. (A 33)

When r →∞, ρ̂ should have a finite value, and thus

X8 = 0 for k < 0 or X7 = 0 for k > 0. (A 34a, b)
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Therefore, the solution of (A 28) is

ρ̂k 6= 0 = ρ̂r=R,k 6= 0

(
R

r

)|k|
(A 35)

with a new coefficient ρ̂r=R,k 6= 0, which will be determined later.
Differentiation of (A 35) gives

ρ̂′k 6= 0 = −|k|
r
ρ̂r=R,k 6= 0

(
R

r

)|k|
. (A 36)

Substitution of (A 36) and (A 35) into (A 25) and (A 26), respectively, yields

q̂′′r +
1

r
q̂′r −

(
2Re

∆tc
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r2
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(A 37)
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q̂θ +

2ik
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r
Re ρ̂r=R,k 6= 0

(
R
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)|k|
. (A 38)

Using (A 27), (A 37) becomes

q̂′′r +
3

r
q̂′r −

(
2Re

∆tc
+
k2 − 1

r2

)
q̂r = −|k|

r
Re ρ̂r=R,k 6= 0

(
R

r

)|k|
. (A 39)

Note that when the right-hand side of (A 39) is zero, (A 39) is also a modified Bessel
equation such as (A 12) or (A 19). Therefore, the homogeneous solution of (A 39) is

q̂rho =
1

r

{
X8I|k| (mr) +X9K|k| (mr)

}
, (A 40)

where I|k| and K|k| are the modified Bessel functions of the first kind, of order |k|, and
the second kind, of order |k|, respectively.

Also the particular solution of (A 39) is obtained by assuming q̂rpa = X10r
λ,

q̂rpa =
∆tc
2

|k|
r
ρ̂r=R,k 6= 0

(
R

r

)|k|
. (A 41)

From (A 40) and (A 41), the general solution of (A 39) is

q̂r,k 6= 0 = X8

1

r
I|k| (mr) +X9

1

r
K|k| (mr) +

∆tc
2

|k|
r
ρ̂r=R,k 6= 0

(
R

r

)|k|
. (A 42)

From the boundary conditions (A 29) and (A 31) we can determine the coefficient
of (A 42), yielding

q̂r,k 6= 0 =
∆tc
2

|k|
r
ρ̂r=R,k 6= 0

(
R

r

)|k|
+ C

1

r
K|k| (mr) , (A 43)

where

C =
R ˆ̃φk 6= 0 − 1

2
∆tc|k|ρ̂r=R,k 6= 0

K|k| (mR)
. (A 44)
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Differentiation of (A 43) gives

q̂′r,k 6= 0 = − ∆tc
2

|k| (|k|+ 1
)

r2
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R

r

)|k|
+ C

{
−m
r
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, (A 45)

where the differential relation between the modified Bessel functions K of orders n
and n+ 1 is used,

d

dr
Kn (mr) = −mKn+1 (mr) +

n

r
Kn (mr) . (A 46)

By substituting (A 43) and (A 45) into (A 27), we get the general solution of q̂θ,k 6= 0,

q̂θ,k 6= 0 =
i

k

{
−∆tc

2

|k|2
r
ρ̂r=R,k 6= 0

(
R

r

)|k|
+
|k|
r
CK|k| (mr)− mCK|k|+1 (mr)

}
. (A 47)

Note that (A 47) satisfies the boundary condition (A 32).
Now, let us determine the value ρ̂r=R,k 6= 0. From the boundary condition (A 30), we

obtain

C

{ |k|
R
K|k| (mR)− mK|k|+1 (mR)

}
=

∆tc
2

|k|2
R
ρ̂r=R,k 6= 0. (A 48)

By substituting (A 44) into (A 48), we obtain the relation between ρ̂r=R,k 6= 0 and ˆ̃φk 6= 0

as follows:

ρ̂r=R,k 6= 0 =
2

∆tc

|k|K|k| (mR)− mRK|k|+1 (mR)

|k|{(2|k|/R)K|k| (mR)− mK|k|+1 (mR)
} ˆ̃φk 6= 0. (A 49)

From (A 44) and (A 49), we also get the relation between C and ˆ̃φk 6= 0,

C =
R|k|

2|k|K|k| (mR)− mRK|k|+1 (mR)
ˆ̃φk 6= 0. (A 50)

Substitution of (A 49) and (A 50) into (A 35), (A 43) and (A 47) yields

ρ̂k 6= 0 =
2

∆tc

1

|k|
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R

r

)|k|
, (A 51)

q̂r,k 6= 0 = ˆ̃φk 6= 0

A
(
R/r

)|k|
+ R|k|K|k| (mr)
B r

, (A 52)

q̂θ,k 6= 0 =
i|k|
k

ˆ̃φk 6= 0

−A (R/r)|k| + {R|k|K|k| (mr)− mRrK|k|+1 (mr)
}

B r
, (A 53)

where

A = R|k|K|k| (mR)− mR2K|k|+1 (mR) , B = 2|k|K|k| (mR)− mRK|k|+1 (mR) . (A 54)

Appendix B. Derivation of (4.39)
For (α, β) = (γ, δ) = (0, 2π), (4.38) becomes

φ1(θ) = − %

2π

∫ 2π

0

a (τ− θ) cos τ dτ. (B 1)
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Using (4.31)–(4.33) and the definition of the Fourier transformation

a (θ) =
∑
k

â (k) eikθ, (B 2)

we obtain

a (θ) = Y0 +
2

∆tc

∑
k 6= 0

Yk

|k| cos (kθ). (B 3)

From (B 3) one can easily get

a (τ− θ) = Y0 +
2

∆tc

∑
k 6= 0

Yk

|k| {cos (kτ) cos (kθ) + sin (kτ) sin (kθ)}. (B 4)

Substitution of (B 4) into (B 1) yields

φ1(θ) = − %

2π

∫ 2π

0

{Y0 cos τ} dτ

− %

2π

∫ 2π

0

{
2

∆tc

∑
k 6= 0

Yk

|k| {cos (kτ) cos (kθ) + sin (kτ) sin (kθ)} cos τ

}
dτ. (B 5)

The first term of the right-hand side of (B 5) is identically zero. Application of the
orthogonality of trigonometric functions to the second term of the right-hand side of
(B 5) yields

φ1 (θ) = −% 2

∆tc
Y1 cos θ (B 6)

with

Y1 =
RK1 (mR)− mR2K2 (mR)

2K1 (mR)− mRK2 (mR)
. (B 7)
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